Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Expert Syst ; 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-2238816

ABSTRACT

Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.

2.
Multimed Syst ; 28(4): 1495-1513, 2022.
Article in English | MEDLINE | ID: covidwho-1756814

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused outbreaks of new coronavirus disease (COVID-19) around the world. Rapid and accurate detection of COVID-19 coronavirus is an important step in limiting the spread of the COVID-19 epidemic. To solve this problem, radiography techniques (such as chest X-rays and computed tomography (CT)) can play an important role in the early prediction of COVID-19 patients, which will help to treat patients in a timely manner. We aimed to quickly develop a highly efficient lightweight CNN architecture for detecting COVID-19-infected patients. The purpose of this paper is to propose a robust deep learning-based system for reliably detecting COVID-19 from chest X-ray images. First, we evaluate the performance of various pre-trained deep learning models (InceptionV3, Xception, MobileNetV2, NasNet and DenseNet201) recently proposed for medical image classification. Second, a lightweight shallow convolutional neural network (CNN) architecture is proposed for classifying X-ray images of a patient with a low false-negative rate. The data set used in this work contains 2,541 chest X-rays from two different public databases, which have confirmed COVID-19 positive and healthy cases. The performance of the proposed model is compared with the performance of pre-trained deep learning models. The results show that the proposed shallow CNN provides a maximum accuracy of 99.68% and more importantly sensitivity, specificity and AUC of 99.66%, 99.70% and 99.98%. The proposed model has fewer parameters and low complexity compared to other deep learning models. The experimental results of our proposed method show that it is superior to the existing state-of-the-art methods. We believe that this model can help healthcare professionals to treat COVID-19 patients through improved and faster patient screening.

SELECTION OF CITATIONS
SEARCH DETAIL